
Abstract — Electricity load forecasting is an essential task
within smart grids to assist demand and supply balance.
While advanced deep learning models require large amounts
of high-resolution data for accurate short-term load
predictions, fine-grained load profiles can expose users'
electricity consumption behaviors, which raises privacy and
security concerns. One solution to improve data privacy is
federated learning, where models are trained locally on
private data, and only the trained model parameters are
merged and updated on a global server. Therefore, this paper
presents a novel transformer-based deep learning approach
with federated learning for short-term electricity load
prediction. To evaluate our results, we benchmark our
federated learning architecture against central and local
learning and compare the performance of our model to long
short-term memory models and convolutional neural
networks. Our simulations are based on a dataset from a
German university campus and show that transformer-based
forecasting is a promising alternative to state-of-the-art
models within federated learning.

Index Terms-- federated learning, load forecasting, smart
grid, transformer

I. INTRODUCTION

The requirements for a reliable, resilient, and secure
energy management architecture are growing [1]. While
the energy crisis and climate change have accelerated the
installation of photovoltaic and wind turbines, the
electricity supply is increasingly volatile and uncertain.
Therefore, electric load forecasting, especially short-term
load forecasting (STLF), is essential for planning and
operating smart grids. Accurate STLF supports multiple
disciplines, including power dispatching, intra-day
generation planning, and peak load shaving [1]. Over the
last decades, STLF models have improved significantly,
and nowadays, long short-term memory (LSTM) models
and convolutional neural networks (CNNs) are widely
used in time series forecasting, as they can capture
complex and non-linear patterns [2]. A high volume of
fine-grained data is essential for accurate prediction
models. Therefore, smart grids and industrial sites install
advanced metering infrastructure to monitor real-time
energy consumption [3]. For data processing and model
training, three fundamental architectures exist, namely
central, local, and federated learning (FL).

This work was funded by the German Research Foundation (DFG) as
part of the Research Training Group 2153: 'Energy Status Data -
Informatics Methods for its Collection, Analysis, and Exploitation'.

In central learning, the data is uploaded to a central
server, and one forecasting model is used to predict all load
profiles. However, regulatory authorities and users have
raised many privacy concerns [4]. As research shows,
attackers can use high-resolution electricity consumption
data to reveal customers' habits [4], location [5], or
customers' absences for break-ins [2], leading users in
some countries to refuse smart meter installation. Previous
attempts to improve data security, like data aggregation,
are unsuitable for precise STLF models, which need fine-
grained input data [6].

Another alternative is local learning, where each party
stores its data locally and builds its individual STLF
model. However, this prevents the forecasting models
from potentially benefiting from peers' data and thus limits
scalability and transfer learning [7].

FL has recently been proposed as a solution introducing
a distributed machine learning approach to improve the
data security, privacy, latency, and bandwidth of the
underlying communication network [8]. Here, models are
trained locally on private data, and only the model
parameters are shared and updated on a global server [9].

A. Related work
FL was introduced by Vaswani et al. [10] in 2017 as a
novel technique to share prediction models from different
mobile phones collaboratively. Within the last years, some
researchers have adopted FL within the energy domain,
including energy control [1, 3, 11], non-intrusive load
monitoring [12–14], and energy theft detection in smart
grids [15]. In particular, the implementation of FL for
STLF has been investigated in some publications, as seen
in TABLE I.
Within the STLF domain, authors focus on electricity
forecasting [16] or multi-energy predictions [17] and
analyze attack scenarios [18] or privacy-enhancing
measures like noise adding [2]. Since highly heterogenous
data from different facilities can reduce FL performance,
several authors investigate the clustering of similar
datasets to improve prediction accuracy. Here clustering
techniques like hierarchical clustering [19], k-means
clustering [20], and socioeconomic clustering [4] are
analyzed.

Secure short-term load forecasting for smart
grids with transformer-based federated learning

J. Sievers*, and T. Blank*
*Karlsruhe Institute of Technology (KIT), Institute for Data Processing and Electronics (IPE),

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, (Germany)

979-8-3503-4837-8/23/$31.00 ©2023 IEEE 229

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

le
an

 E
le

ct
ric

al
 P

ow
er

 (I
C

C
EP

) |
 9

79
-8

-3
50

3-
48

37
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

EP
57

91
4.

20
23

.1
02

47
36

3

Authorized licensed use limited to: KIT Library. Downloaded on November 10,2023 at 16:29:42 UTC from IEEE Xplore. Restrictions apply.

TABLE I: CONCEPT MATRIX ON THE LITERATURE OF FL-BASED STLF

Ref. Year Focus LSTM CNN
Trans-
former

[2] 2021 Increasing privacy
by adding noise

✓
[20] 2022 Effect of clustering

on forecast
accuracy

✓

[5] 2020 Effect on
networking load
gain

✓

[21] 2021 Effect of clustered
aggregation

✓
[19] 2022 Effect of different

clustering variants
✓

[18] 2022 Poisoning attack
on FL architecture

✓
[4] 2021 Socioeconomic

clustering for FL
✓

[14] 2021 Effect of different
clustering variants

✓
[16] 2022 FL for STLF ✓
[22] 2022 Comparing LSTM

with basic models
✓

[23] 2022 Adaptative
federated transfer
learning

✓

[17] 2022 Multi-energy FL
forecasting

✓
This
paper

2023 FL for STLF with
CNNs, LSTMs,
and transformers

✓✓ ✓✓ ✓✓

Over the last decades, STLF models have improved
significantly, and LSTM models have outperformed
traditional recurrent neural networks (RNNs) for load
forecasting [16]. Therefore, within the analyzed literature,
most publications apply LSTM models for forecasting [2,
4, 5, 14, 16, 18–22], while only a few consider CNNs or
hybrid LSTM-CNNs [17, 23]. However, LSTM models
are challenging to parallelize due to their sequential nature,
limiting their scalability. In response to high
computational cost, the transformer-based architecture has
been developed in the natural language processing domain
[10], outperforming LSTM models and CNNs while also
allowing parallelization [24]. Since then, the application
range of transformers has been extended to various
domains, including computer vision [25], reinforcement
learning [26], and audio [27].
L'Heureux et al. [24] first present a transformer-based
architecture for load forecasting by modifying the
architecture, adding N-space transformation, and
proposing a procedure for contextual feature handling.
Results show that the transformer-based forecasting model
outperforms other state-of-the-art methods in accuracy and
scalability.

B. Paper contribution and organization
However, to the best of our knowledge, no publications
exist that propose a transformer-based FL architecture for
STLF. Therefore, we focus on analyzing the forecasting
performance of a novel transformer-based prediction
model compared to selected state-of-the-art deep learning
methods. Consequently, our main contributions are:

First, we present a novel transformer-based FL
architecture for STLF to improve data privacy, model
robustness, and scalability while enhancing
forecasting performance.
Second, we compare our transformer-based model
with state-of-the-art LSTM models and CNNs.
Third, we implement each of the three models for a
local, central, and FL architecture to evaluate our
prediction results extensively.
Fourth, we analyze the effect of two forecasting
horizons (12 and 24 hours) and different calendarial
and weather features for each model.
Fifth, we demonstrate the effect of limited data on
forecasting accuracy within local and FL.

The results show that our transformer-based FL
architecture can improve forecasting accuracy while
providing high privacy and scalability. We organize the
rest of the paper, as seen in FIG. 1: Section 2 introduces our
data analysis, while Section 3 provides an overview of our
forecasting models. Section 4 outlines our training
scenarios, Section 5 evaluates our forecasting
performance, and Section 6 presents our conclusion.

FIG. 1: GRAPHICAL SUMMARY OF THE PAPER

II. DATA ANALYSIS

This section briefly describes our dataset, preprocessing
techniques and explains our feature engineering methods,
including Pearson correlation, min-max scaling, sine-
cosine transformation, and Fast Fourier Transformation
(FFT). We select the meter readings from a German
university campus of the "Karlsruhe Institute of
Technology" as a suitable dataset, which includes over
2000 smart meter readings from residential buildings and
industrial sites between 2019 and 2021 in hourly
resolution. The measured values are indicated in kW and
can be seen in FIG. 2. Within the selected datasets are
administrative buildings, workshops, and production
facilities. For performance reasons, we limit our
simulations to a subset of 33 randomly chosen smart meter
readings, hereafter referred to as clients. Next, we clean the
data by filling in single missing values with the last non-
null value. Further, we replace outliers with the median of
the previous three load readings. We consider values as

IV. Training scenarios

VI. Conclusion

II. Data analysis

Dataset desciption

Data preprocessing

Features engineering

III. Forecasting task

Centralized learning

Local learning

Federated learning

Transformer model

LSTM model

CNN model

V. Performance evaluation

Forecasting models

Learning architectures

Horizons + features + limited data

230
Authorized licensed use limited to: KIT Library. Downloaded on November 10,2023 at 16:29:42 UTC from IEEE Xplore. Restrictions apply.

outliers that are (i) negative (no energy generation) or that
(ii) deviate more than two standard deviations from the last
value (load inertia on building level).

FIG. 2: EXEMPLARY LOAD PROFILES FROM THE DATASET

In STLF, selecting the right features is crucial for
building an accurate and effective forecasting model, as
features provide necessary information about historical
trends and patterns within the data. For feature
engineering, we analyze weather-related and calendar
features. To select promising weather features, we prepare
a weather dataset from Meteostat [28] for our location and
period. The dataset includes 14 features such as air
temperature [°C], relative humidity [%], total precipitation
[mm], average wind speed [km/h], sea-level air pressure
[hPa], and others. Further, we calculate the apparent
temperature according to Savi et al. [4], as they perform
well with this feature. To select a final subset of weather-
related features, we apply the Pearson correlation, which
describes the linear relationship between two quantitative
variables X and Y (1). The computed correlation values
range from -1 to 1, indicating a strong negative or positive
correlation. ݎ = ஼௢௩(௑,௒)௦ೣ∗௦೤ = ௡(∑ ௫௬)ି(∑ ௫)(∑ ௬)ඥ(௡(∑ ௫మି(∑ ௫)మ)(௡ ∑ ௬మି(∑ ௬)మ), (1)

where ݒ݋ܥ(ܺ, ܻ) is the covariance and ݏ௜ the standard
deviation.
It is worth mentioning that not all variables necessarily
have a linear relationship, and therefore, also Spearman
correlation could have been used [29]. We then visualize
the results in a heatmap, as seen in FIG. 3, and select the
two features with the highest correlation regarding the
load: air temperature (temp, 0.18) and relative humidity
(rhum, -0.21).

FIG. 3: HEATMAP OF PEARSON CORRELATIONS

Afterward, we calculate the Pearson correlation for
calendar features, including hour, weekday, month,

quarter, and year. Here we choose the two features, hour
and weekday, as they have the highest correlation. After
feature selection, we map the cyclical variables hour of the
day and weekday to the unit circle to allow periodicity in
time. The mapping is essential, as 11 p.m. and 0 a.m. are
consecutive times, whereas the numerical values 11 and 0
are not. For both features, we generate two sine and cosine
features, as demonstrated in (2) [30]:

ℎݎݑ݋ௗ௔௬ = ቐ sin (ଶగଶସ cos(ݐ ቀଶగଶସ ,ቁݐ (2)

where t is the time value to be transformed.
Next, we use a min–max scaler (3) to scale all variables

to have the same range from 0 to 1. Scaled transformation
prevents attributes with larger scales from biasing the
values of the objective functions, speeding up convergence
[23]. ݔ = ௫ି௫೘೔೙௫೘ೌೣି௫೘೔೙, (3)

where x is the variable value.
The forecasting models make predictions based on a

window of consecutive data samples. To select a suitable
window size, we apply the FFT on the load data to find the
period of dominating seasonal components of the time
series. FFT is a transformation function that converts the
time series sequence xn to the frequency domain xk. We
calculate the Fourier coefficients (4) and plot the results in
FIG. 4. ௞ݔ = ∑ ௡݁ି௜ଶగ௞௡ݔ ேൗேିଵ௡ୀ଴ , (4)

where ݔ௞ is the kth coefficient of the FFT and ܺ௡denotes
the nth sample of the time series consisting of N samples.

According to the FFT, we use the last 24 hours as a
sliding window for our forecasting models.

FIG. 4: PLOTTED FOURIER COEFFICIENTS OF THE LOAD DATA

Finally, we split the dataset using 70% for training, 20%
for validation, and 10% for testing to obtain our datasets
for our forecasting models. It is worth mentioning that we
maintain the continuity of the time series data by not
shuffling the datasets.

III. FORECASTING TASK

We evaluate four forecasting tasks for each model,
considering two forecasting horizons (12 and 24 hours)
and two feature sets. In the first feature set, we select five
features: energy consumption and the respective sine and
cosine values of the hour and weekday. The second feature

231
Authorized licensed use limited to: KIT Library. Downloaded on November 10,2023 at 16:29:42 UTC from IEEE Xplore. Restrictions apply.

set consists of the last five features plus the air temperature
and relative humidity. Therefore, we implement four
sliding windows. Each with a look-back of 24 samples
(one day), considering a look-ahead of sizes 12 and 24 and
five and seven features. To evaluate our model accuracy,
we select suitable evaluation metrics. FL models tend to
predict the average of each dataset, hence offering only
promising root mean squared errors (RMSE, (5)) and mean
absolute errors (MAE, (6)). Therefore, we include also
mean absolute percentage error (MAPE, (7)) [82]. Further,
we measure the training time per epoch to evaluate the
model's scalability and complexity.ܴܧܵܯ = ටଵ௡ ∑ ௜ݕ) − ௜)ଶ௡௜ୀଵݔ , ܧܣܯ(5) = ଵ௡ ∑ ௜ݕ| − ௜|௡௜ୀଵݔ , ܧܲܣܯ(6) = ଵ଴଴௡ ∑ ቚ௫೔ି௬೔௫೔ ቚ௡௜ୀଵ , (7)
where ݕ௜ and ݔ௜ present the predicted and real load value.

A. Transformer Model
The main structure of the transformer model consists of
three components: the embedding, the encoder, and the
decoder. The transformer embedding involves positional
encoding and data preprocessing. In our simulation, we
perform this step in advance during our data processing to
use the same data for all three models. Together, the
encoder-decoder of the transformer allows for the effective
processing of time series data by leveraging self-attention
mechanisms [31].
We choose the hyperparameters of our transformer model
after careful manual tuning. Several architectures are
tested, considering 1-6 encoder and decoder layers. Within
the multi-head attention layers, we try different numbers
of attention heads (2-4) with varying sizes (2-8). As seen
in FIG. 5, our best-performing transformer model consists
of two encoder and two decoder layers.

FIG. 5: ARCHITECTURE OF OUR TRANSFORMER MODEL

The encoder input layer takes as input the window with a
look-back of size 24 and passes it to the encoder. Within
each encoder layer, the input tensor is fed into a multi-head
attention layer with a dropout of 0.2. Next, we implement
a residual connection (add layer) to connect the output of
the multi-head attention layer with the input data before.
The multi-head attention layers have 2 heads with a size of
4. The output is then passed to a dense layer, with a
rectified linear unit (ReLU) activation function and
another add layer and layer normalization. Finally, the
output is forwarded into an LSTM layer with seven LSTM
cells, where the hidden states are passed to the multi-head
attention layer of the decoder. Within the decoder, each
layer similarly consists of a multi-head attention layer,
followed by add, dense, and layer normalization. The final
outputs of the decoder are fed into a one-dimensional
average pooling and a dense layer, with 12 or 24 neurons,
depending on the forecasting horizon.

B. LSTM Model
An LSTM model consists of different memory cells which
store information, along with input, forget, and output
gates to control the information flow into and out of the
cell [20]. In contrast to traditional RNNs, which can
struggle to retain information over long time intervals due
to the vanishing gradient problem, LSTM models can
selectively remember or forget information over arbitrary
time intervals [19].
To develop our final LSTM model, we carefully compare
various architectures. Here we consider 1-10 LSTM layers
with 2-256 LSTM cells and test the performance of adding
1-5 dense layers at the end. As seen in FIG. 6, our final
model consists of 6 LSTM layers with 32 LSTM cells
each.

FIG. 6: ARCHITECTURE OF OUR LSTM MODEL

The first layer takes 24 historical samples as input, passing
them to the six consecutive LSTM layers with 32 LSTM
cells each and hyperbolic tangent (tanh) activation
functions. The last LSTM layer feeds the output into a
dense layer with 32 units and a dropout of 0.2, followed by
a final dense layer, with 12 or 24 neurons, depending on
the forecasting horizon.

C. CNN Model
A CNN typically consists of a series of convolution and
pooling layers for feature extraction followed by one or
more fully connected layers to map the extracted features
to the final output [32]. A convolutional layer operates in
the time series domain by sliding a small kernel window
across the time series data to extract features from the input
tensor. The resulting feature map can be input for
subsequent layers. A pooling layer provides

Encoder Input Layer

Multi-Head Attention

Add

Dense

Add & Norm

Encoder

Decoder

E
nc

od
er

 L
ay

er
 1

Multi-Head Attention

Add

Dense

Add & Norm

E
nc

od
er

 L
ay

er
 2

Multi-Head Attention

Add

Dense

Add & Norm

LSTM

Decoder Input Layer

Multi-Head Attention

Add

Dense

Add & Norm

LSTM

Output

Global average pooling

Dense

D
ec

od
er

 L
ay

er
 1

D
ec

od
er

 L
ay

er
 2

LSTM

D
en

se
la

ye
r(

32
 u

ni
ts

)

In
pu

t L
ay

er

LSTM Layer 1

LSTM Cell 1

LSTM Layer 6

D
en

se
la

ye
r

O
ut

pu
tLSTM Cell 2

LSTM Cell 32

+ … +

LSTM Cell 1

LSTM Cell 2

LSTM Cell 32

+ … ++ … +

232
Authorized licensed use limited to: KIT Library. Downloaded on November 10,2023 at 16:29:42 UTC from IEEE Xplore. Restrictions apply.

downsampling and reduces the dimensionality of the input
data by aggregating adjacent values into a single value
using a predefined aggregation function [33].
We test different CNN architectures with varying
convolutional layers (1-10), pooling layers (1-10), and
additional batch-normalization layers. Further, we test
various filter sizes (2-64) and convolutional widths (3-5).
As seen in FIG. 7, our final CNN model consists of 4
convolutional and batch-normalization layers, followed by
an average pooling layer and one dense layer with 32
neurons and a 0.2 dropout. The convolutional layers have
a convolution width of 3 and 32 filters.

FIG. 7: ARCHITECTURE OF OUR ONE-DIMENSIONAL CNN

IV. TRAINING SCENARIOS

To evaluate the performance of our forecasting models, we
introduce central and local learning as benchmarks. Within
the three training architectures, we train our three models
considering two forecasting horizons (12 and 24 hours)
and the two feature sets, resulting in 36 training scenarios.
All experiments are run in the TensorFlow 2 deep learning
framework [34] on a simulation server using an Intel UHD
Graphics 630 GPU with 16 GB memory attached to an
Intel Core i9-9900K CPU at 4.6 GHz, with 8 kernels and
32 GB memory. The distributed training scenarios are all
simulated on a single machine.

A. Central Learning
In central learning, a non-distributed server merges all

individual energy consumption datasets and performs data
processing and model training. Here, a joint forecasting
model is developed that has access to all datasets and thus
can benefit from other users' data. However, the model
must generalize the training data to provide high-quality
predictions for the individual datasets. This approach is
most commonly applied when data privacy is not a
significant concern. Under the central learning scenario,
we train our models for 100 epochs. Further, we consider
early stopping based on the lowest error achieved on the
validation set and the model checkpoint callback [19].

B. Local Learning
All individual datasets remain private and unshared in

the fully-private local learning architecture. Each client
trains its unique prediction model, resulting in many
specialized models without benefitting from the
experience embedded in data owned by other clients.
Similarly to central learning, our local models are trained
for 100 epochs. We consider the early stopping callback
based on the lowest loss achieved on the validation set and
the model checkpoint callback.

C. Federated Learning
We apply the general FL architecture (FIG. 8) and

extend it with clustered aggregation (TABLE II).

FIG. 8: FEDERATED LEARNING ARCHITECTURE

First, the server randomly initializes a global model
with cluster-specific model weights. Within each cluster,
the server distributes the global model to the clients, where
each participating client i trains the model on its local data
Di. Here we apply the Adam optimizer [35], a version of
stochastic gradient descent. Afterward, the clients return
their updated model parameters to the server, where the
global model is updated using weighted averaging. The
server repeats this procedure for t training rounds [21]. To
update our clients, we apply the federated averaging
algorithm, which calculates the data-weighted average for
each model.

TABLE II: FL ALGORITHM WITH CLUSTERED AGGREGATION
Algorithm 1: Federated training with clustered aggregation
1 Input: Attribute data from each of m clients
2 Based on attributes, the server groups clients into n clusters
3 The server randomly initializes a base model wrand

4 for each cluster Ck with k=1,2,…,N, in parallel do
5 Initialize cluster-specific model weights, wk ← wrand

6 end for
7 for each cluster Ck with k=1,2,…,N, in parallel do
8 for communication round t=1,2,…,T do
9 for each client ci in cluster Ck, i=1,2,…,T, in parallel do
10 Synchronize the local model with the latest cluster specific

model: wi
k ← wk

11 Update local model wi
k by training on local Data,

Di={Xi, Yi}
12 Transmit updated wi

k back to the server
13 end for
14 Update model weights for the cluster-specific model by

aggregation: wk ← ଵ௟ ∑ ௞௜௟௜ୀଵݓ
15 end for
16 end for
17 Output: cluster-specific models with trained weights: wk,

k=1,2,…,N

The performance of FL is best when the data is non-
independent and identically distributed (non-iid) [36].
However, training a model with FL usually suffers from
the non-iid data problem, where clients contain data
distributions that are diverse from each other. As a result,
the global model has a poor convergence rate and
performance. Clustering clients with similar properties and
creating individual global models for each cluster is a
promising solution to this problem [21]. To deal with data
heterogeneity, we apply K-Means clustering (with k = 6)
for the 33 selected clients to obtain six clusters. As the time

D
en

se
la

ye
r(

32
 u

ni
ts

)

In
pu

t L
ay

er

D
en

se
la

ye
r

O
ut

pu
t

C
on

vo
lu

tio
na

ll
ay

er

G
lo

ba
l a

ve
ra

ge
po

ol
in

g

Ba
tc

h-
no

rm
al

iz
at

io
n

C
on

vo
lu

tio
na

ll
ay

er

Ba
tc

h-
no

rm
al

iz
at

io
n

C
on

vo
lu

tio
na

ll
ay

er

Ba
tc

h-
no

rm
al

iz
at

io
n

C
on

vo
lu

tio
na

ll
ay

er

Ba
tc

h-
no

rm
al

iz
at

io
n

Local
data

Local
model

Training Training

Client 1 Client k

…

…
aggregates Global model

Server
initializes

global model

Server selects n
clients

Server sends
global model to

n clients

Clients train global
model with local data

Clients send trained
model to server

Server aggregates local
model to global model

Server

Local
data

Local
model

233
Authorized licensed use limited to: KIT Library. Downloaded on November 10,2023 at 16:29:42 UTC from IEEE Xplore. Restrictions apply.

series sequences may vary in timing and speed, we apply
dynamic time warping as a clustering metric. We choose
the hyperparameters for our FL architecture after careful
manual tuning using partial data from the constructed
dataset. The most critical parameters are the number of
local epochs Nepoch and the number of rounds Nround [21].
Considering that clients have restricted processing
capabilities, we set Nepoch = 20 and Nround = 2.

V. PERFORMANCE EVALUATION

To evaluate the performance of the different training
scenarios, we report the RMSE, MAE, MAPE, and
training time per epoch for each training scenario. The
reported metrics are averaged over all clients, clusters, or
sequences. Our results show that both FL and local
learning achieve high forecasting performance, while FL
works especially well with limited data available. Further,
our transformer-based model outperforms the LSTM
model and CNN in most scenarios while needing only half
the training time compared to the LSTM model.

In central learning, the forecasting models can benefit
from large volumes of data, while the models might
struggle to generalize and capture individual household
behaviors. The metrics in TABLE III show that the
transformer-based model performs best within the central
learning architecture in every training scenario based on
RMSE, MAE, and MAPE. Here the highest forecasting
accuracy for the next 12 and 24 hours is achieved with the
combination of calendar and weather features. However,
the CNN is the fastest forecasting algorithm, while the
LSTM model needs the longest training time per epoch.

TABLE III: EVALUATION OF CENTRAL LEARNING
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 1.5628 1.4014 109.90 13
LSTM 1.5344 1.4055 114.03 508
Transf. 1.0160 0.8881 62.08 385

7 CNN 1.8131 1.6260 134.18 51
LSTM 1.5344 1.4055 114.03 750
Transf. 1.0025 0.8844 61.11 320

24 5 CNN 1.5100 1.3683 108.49 26
LSTM 1.5372 1.4079 114.29 495
Transf. 1.0408 0.9331 64.95 513

7 CNN 1.4411 1.3111 101.61 32
LSTM 1.5372 1.4079 114.29 793
Transf. 1.0221 0.9060 61.63 213

The forecasting results of FL and local learning show
significantly higher forecasting accuracy. For instance, the
best-performing model achieves an RMSE of 0.1677 in
local learning and 0.1659 in FL, compared to 1.0025 in the
central architecture. The difference implies that the central
models struggle to generalize and capture individual
behaviors in energy usage. More extensive models might
allow predicting individual behaviors, but as data is stored
in a single location, the privacy risk to energy consumers
is the highest in this training approach.
In FL and local learning, the LSTM and transformer
models achieve similar forecasting accuracy. However, the

transformer model needs less than half of the training time
per epoch, resulting in higher efficiency and scalability.
In the local training, each model trains in isolation. This
approach allows the model to learn individual load patterns
while preventing to benefit from the other datasets. As in
the central architecture, the transformer model achieves
the highest accuracy in local learning (TABLE IV).
However, no definite statement on the best feature set can
be made. Both feature sets yield the best results depending
on the horizon and evaluation metrics.

TABLE IV: EVALUATION OF LOCAL LEARNING
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 0.2094 0.1787 11.168 0.45
LSTM 0.1950 0.1672 10.459 6.66
Transf. 0.1680 0.1347 7.239 2.26

7 CNN 0.2111 0.1802 11.693 0.38
LSTM 0.1992 0.1739 10.827 7.32
Transf. 0.1677 0.1323 6.896 2.89

24 5 CNN 0.2080 0.1786 11.197 0.45
LSTM 0.1998 0.1741 10.904 8.46
Transf. 0.1705 0.1392 7.656 2.76

7 CNN 0.2095 0.1781 11.141 0.55
LSTM 0.1984 0.1728 10.786 9.62
Transf. 0.1714 0.1384 7.482 3.63

For the FL architecture (TABLE V), the LSTM and
transformer model achieve similar forecasting accuracy,
while the transformer needs 48% less training time per
epoch. Considering a 12-hour horizon, the transformer-
based model yields the lowest RMSE. However, the
LSTM model performs best regarding MAE and MAPE.
For a forecasting horizon of 24 hours, the LSTM model
outperforms the transformer in accuracy.

TABLE V: EVALUATION OF FEDERATED LEARNING
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 0.2111 0.1777 10.828 0.54
LSTM 0.1662 0.1309 7.0647 8.12
Transf. 0.1659 0.1315 7.0747 2.58

7 CNN 0.2135 0.1802 11.503 0.34
LSTM 0.1665 0.1313 7.0401 6.45
Transf. 0.1662 0.1327 7.1314 3.07

24 5 CNN 0.2122 0.1794 10.974 0.65
LSTM 0.1701 0.1375 7.5577 8.77
Transf. 0.1711 0.1404 7.7486 5.05

7 CNN 0.2094 0.1777 10.952 0.46
LSTM 0.1730 0.1406 7.8197 7.89
Transf. 0.1713 0.1392 7.5743 3.79

The similar forecasting performance of FL and local
learning is surprising, as the clustered FL architecture
should benefit from similar datasets within the clusters.
One hypothesis to explain the resemblance could be the
large training dataset. Thus, additional data from different
users would be redundant. To evaluate this hypothesis, we
perform further experiments only using the first three
months of the datasets for training. Here the results show
that the FL architecture (TABLE VI) outperforms the local
learning (TABLE VII) by 3% accuracy with limited data
available, compared to 1% with the large dataset. The
increasing difference indicates that FL may be most

234
Authorized licensed use limited to: KIT Library. Downloaded on November 10,2023 at 16:29:42 UTC from IEEE Xplore. Restrictions apply.

relevant for STLF with restricted data available. For
instance, when advanced metering infrastructure has just
been installed. To avoid waiting several months before
making reliable predictions, FL can help increase accuracy
from the beginning.

TABLE VI: EVALUATION FEDERATED LEARNING WITH 3-MONTH DATA
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 0.2104 0.1818 11.569 3
LSTM 0.1808 0.1540 8.5709 46
Transf. 0.1768 0.1478 8.0747 24

7 CNN 0.2153 0.1855 12.275 3
LSTM 0.1876 0.1608 9.1524 46
Transf. 0.1736 0.1437 7.9205 25

24 5 CNN 0.2059 0.1783 11.067 4
LSTM 0.1925 0.1681 9.6662 54
Transf. 0.1775 0.1498 8.3008 28

7 CNN 0.2057 0.1761 11.200 4
LSTM 0.1926 0.1678 9.6334 59
Transf. 0.1806 0.1537 8.4696 33

TABLE VII: EVALUATION LOCAL LEARNING WITH 3-MONTH DATA
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 0.2124 0.1844 11.881 2
LSTM 0.1936 0.1684 9.4323 44
Transf. 0.1787 0.1497 8.1209 20

7 CNN 0.2222 0.1917 12.750 2
LSTM 0.1952 0.1705 9.6137 39
Transf. 0.1822 0.1547 8.4378 19

24 5 CNN 0.2065 0.1796 11.271 3
LSTM 0.1950 0.1701 9.5905 54
Transf. 0.1844 0.1583 8.7302 25

7 CNN 0.2127 0.1845 11.914 3
LSTM 0.1945 0.1697 9.5587 57
Transf. 0.1828 0.1557 8.5105 27

Based on our findings, we summarize the following
recommendations:

For the forecasting horizons studied (12 and 24
hours), the transformer model achieves one of the
highest accuracies (based on RMSE, MAE, and
MAPE) with comparatively low training time per
epoch. Thus, our transformer model presents an
accurate and scalable alternative to LSTM
models and CNNs.
A local or FL architecture should be chosen if
data security and prediction accuracy are highly
relevant. FL is particularly suitable for use cases
with limited data available.
For STLF, a combination of calendar and weather
features can be helpful. However, feature
selection should be performed individually
depending on the dataset.

VI. CONCLUSION

In this paper, we presented a novel transformer-based
model within an FL architecture for STLF. We
benchmarked our FL architecture against central and local
learning to evaluate our results and compare our model's
performance to LSTM models and CNNs. Our simulations
showed that transformer-based forecasting is a promising

alternative to state-of-the-art models within local, central,
and FL. We determined that FL approaches can
outperform centralized learning and slightly outperform
local learning. However, we presented favorable results
with limited data available. In this case, the performance
of the FL model can be improved by 3% compared to local
learning while retaining privacy. Further, we demonstrated
that the transformer model achieved one of the highest
accuracies with 48% less training time than the LSTM
model. Future work could study the effect of different
clustering techniques and varying cluster sizes on
forecasting accuracy.

ACKNOWLEDGMENT

We acknowledge support by the KIT-Publication Fund
of the Karlsruhe Institute of Technology. The presented
work was funded by the German Research Foundation
(DFG) as part of the Research Training Group 2153:
'Energy Status Data—Informatics Methods for its
Collection, Analysis, and Exploitation'.

REFERENCES

[1] S. Lee, Le Xie, and D.-H. Choi, "Privacy-Preserving
Energy Management of a Shared Energy Storage System
for Smart Buildings: A Federated Deep Reinforcement
Learning Approach," Sensors, vol. 21, no. 14, p. 4898,
2021, doi: 10.3390/s21144898.

[2] Y. Zhao, W. Xiao, L. Shuai, J. Luo, S. Yao, and M. Zhang,
"A Differential Privacy-enhanced Federated Learning
Method for Short-Term Household Load Forecasting in
Smart Grid," 2021 7th International Conference on
Computer and Communications (ICCC), pp. 1399–1404,
2021, doi: 10.1109/ICCC54389.2021.9674514.

[3] S. Lee and D.-H. Choi, "Federated Reinforcement
Learning for Energy Management of Multiple Smart
Homes With Distributed Energy Resources," IEEE
Transactions on Industrial Informatics, vol. 18, no. 1, pp.
488–497, 2022, doi: 10.1109/TII.2020.3035451.

[4] M. Savi and F. Olivadese, "Short-Term Energy
Consumption Forecasting at the Edge: A Federated
Learning Approach," IEEE Access, vol. 9, pp. 95949–
95969, 2021, doi: 10.1109/ACCESS.2021.3094089.

[5] A. Taïk and S. Cherkaoui, "Electrical Load Forecasting
Using Edge Computing and Federated Learning," ICC
2020 - 2020 IEEE International Conference on
Communications (ICC), pp. 1–6, 2020, doi:
10.1109/ICC40277.2020.9148937.

[6] J. Sievers and T. Blank, "A Systematic Literature Review
on Data-Driven Residential and Industrial Energy
Management Systems," Energies, vol. 16, no. 4, p. 1688,
2023, doi: 10.3390/en16041688.

[7] S. Abdulrahman, H. Tout, H. Ould-Slimane, A. Mourad,
C. Talhi, and M. Guizani, "A Survey on Federated
Learning: The Journey From Centralized to Distributed
On-Site Learning and Beyond," IEEE Internet of Things
Journal, vol. 8, no. 7, pp. 5476–5497, 2021, doi:
10.1109/JIOT.2020.3030072.

[8] V. Venkataramanan, S. Kaza, and A. M. Annaswamy,
"DER Forecast Using Privacy-Preserving Federated
Learning," IEEE Internet of Things Journal, vol. 10, no. 3,
pp. 2046–2055, 2023, doi: 10.1109/JIOT.2022.3157299.

[9] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y. Arcas, "Communication-Efficient Learning of

235
Authorized licensed use limited to: KIT Library. Downloaded on November 10,2023 at 16:29:42 UTC from IEEE Xplore. Restrictions apply.

Deep Networks from Decentralized Data," Proceedings of
the 20 th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2016. [Online].
Available: https://arxiv.org/pdf/1602.05629

[10] A. Vaswani et al., "Attention Is All You Need," Jun. 2017.
[Online]. Available: https://arxiv.org/pdf/1706.03762

[11] F. Rezazadeh and N. Bartzoudis, "A Federated DRL
Approach for Smart Micro-Grid Energy Control with
Distributed Energy Resources," IEEE CAMAD 2022,
2022. [Online]. Available: https://arxiv.org/pdf/
2211.03430

[12] A. Giuseppi, S. . Manfredi, D. Menegatti, A. Pietrabissa,
and C. Poli, "Decentralized Federated Learning for
Nonintrusive Load Monitoring in Smart Energy
Communities," 2022 30th Mediterranean Conference on
Control and Automation (MED), pp. 312–317, 2022, doi:
10.1109/MED54222.2022.9837291.

[13] Y. Wang, I. L. Bennani, X. Liu, M. Sun, and Y. Zhou,
"Electricity Consumer Characteristics Identification: A
Federated Learning Approach," IEEE Trans. Smart Grid,
vol. 12, no. 4, pp. 3637–3647, 2021, doi:
10.1109/TSG.2021.3066577.

[14] Y. He, F. Luo, G. Ranzi, and W. Kong, "Short-Term
Residential Load Forecasting Based on Federated
Learning and Load Clustering," 2021 IEEE International
Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), pp. 77–
82, 2021, doi:
10.1109/SmartGridComm51999.2021.9632314.

[15] M. M. Ashraf, M. Waqas, G. Abbas, T. Baker, Z. H.
Abbas, and H. Alasmary, "FedDP: A Privacy-Protecting
Theft Detection Scheme in Smart Grids Using Federated
Learning," Energies, vol. 15, no. 17, p. 6241, 2022, doi:
10.3390/en15176241.

[16] J. Chen, T. Gao, R. Si, Y. Dai, Y. Jiang, and J. Zhang,
"Residential Short Term Load Forecasting Based on
Federated Learning," 2022 IEEE 2nd International
Conference on Digital Twins and Parallel Intelligence
(DTPI), pp. 1–6, 2022, doi:
10.1109/DTPI55838.2022.9998969.

[17] G. Zhang, S. Zhu, and X. Bai, "Federated Learning-Based
Multi-Energy Load Forecasting Method Using CNN-
Attention-LSTM Model," Sustainability, vol. 14, no. 19, p.
12843, 2022, doi: 10.3390/su141912843.

[18] N. B. S. Qureshi, D.-H. Kim, J. Lee, and E.-K. Lee,
"Poisoning Attacks against Federated Learning in Load
Forecasting of Smart Energy," NOMS 2022-2022
IEEE/IFIP Network Operations and Management
Symposium, pp. 1–7, 2022, doi:
10.1109/NOMS54207.2022.9789884.

[19] C. Briggs, Z. Fan, and P. Andras, "Federated Learning for
Short-Term Residential Load Forecasting," IEEE Open
Access Journal of Power and Energy, vol. 9, pp. 573–583,
2022, doi: 10.1109/OAJPE.2022.3206220.

[20] J. S. Nightingale, Y. Wang, F. Zobiri, and M. A. Mustafa,
"Effect of Clustering in Federated Learning on Non-IID
Electricity Consumption Prediction," 2022 IEEE PES
Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), pp. 1–5, 2022, doi: 10.1109/ISGT-
Europe54678.2022.9960569.

[21] Y. L. Tun, K. Thar, C. M. Thwal, and C. S. Hong,
"Federated Learning based Energy Demand Prediction
with Clustered Aggregation," 2021 IEEE International
Conference on Big Data and Smart Computing
(BigComp), pp. 164–167, 2021, doi:
10.1109/BigComp51126.2021.00039.

[22] J. D. Fernández, S. P. Menci, C. M. Lee, A. Rieger, and G.
Fridgen, "Privacy-preserving federated learning for
residential short-term load forecasting," Applied Energy,
vol. 326, p. 119915, 2022, doi:
10.1016/j.apenergy.2022.119915.

[23] Y. Shi and X. Xu, "Deep Federated Adaptation: An
Adaptative Residential Load Forecasting Approach with
Federated Learning," Sensors, vol. 22, no. 9, p. 3264, 2022,
doi: 10.3390/s22093264.

[24] A. L’Heureux, K. Grolinger, and M. A. M. Capretz,
“Transformer-Based Model for Electrical Load
Forecasting,” Energies, vol. 15, no. 14, p. 4993, 2022, doi:
10.3390/en15144993.

[25] Z. Liu et al., "Swin Transformer: Hierarchical Vision
Transformer Using Shifted Windows," in 2021, pp.
10012–10022. [Online]. Available: https://
openaccess.thecvf.com/content/ICCV2021/html/Liu_
Swin_Transformer_Hierarchical_Vision_Transformer_
Using_Shifted_Windows_ICCV_2021_paper.html

[26] L. Chen et al., "Decision Transformer: Reinforcement
Learning via Sequence Modeling," Advances in Neural
Information Processing Systems, vol. 34, pp. 15084–
15097, 2021.

[27] Y. Gong, Y.-A. Chung, and J. Glass, "AST: Audio
Spectrogram Transformer," Apr. 2021. [Online].
Available: https://arxiv.org/pdf/2104.01778

[28] Meteostat, Wetterrückblick und Klimadaten. [Online].
Available: https://meteostat.net/de/ (accessed: Mar. 30
2023).

[29] B. Doğan, M. Ben Jebli, K. Shahzad, T. H. Farooq, and U.
Shahzad, “Investigating the Effects of Meteorological
Parameters on COVID-19: Case Study of New Jersey,
United States,” Environmental Research, vol. 191, p.
110148, 2020, doi: 10.1016/j.envres.2020.110148.

[30] G. Gürses-Tran, T. A. Körner, and A. Monti, "Introducing
explainability in sequence-to-sequence learning for short-
term load forecasting," Electric Power Systems Research,
vol. 212, p. 108366, 2022, doi:
10.1016/j.epsr.2022.108366.

[31] Q. Zhang, J. Chen, G. Xiao, S. He, and K. Deng,
"TransformGraph: A novel short-term electricity net load
forecasting model," Energy Reports, vol. 9, pp. 2705–
2717, 2023, doi: 10.1016/j.egyr.2023.01.050.

[32] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi,
"Convolutional neural networks: an overview and
application in radiology," Insights Imaging, vol. 9, no. 4,
pp. 611–629, 2018, doi: 10.1007/s13244-018-0639-9.

[33] X. Dong, L. Qian, and L. Huang, "Short-term load
forecasting in smart grid: A combined CNN and K-means
clustering approach," in 2017 IEEE International
Conference on Big Data and Smart Computing
(BigComp), 2017, pp. 119–125.

[34] TensorFlow Developers, TensorFlow: Zenodo, 2023.
[Online]. Available: https://zenodo.org/record/7764425
#.ZDex33ZBxaY

[35] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic
Optimization," Dec. 2014. [Online]. Available: https://
arxiv.org/pdf/1412.6980

[36] A. Moradzadeh, H. Moayyed, B. Mohammadi-Ivatloo, A.
P. Aguiar, and A. Anvari-Moghaddam, "A Secure
Federated Deep Learning-Based Approach for Heating
Load Demand Forecasting in Building Environment,"
IEEE Access, vol. 10, pp. 5037–5050, 2022, doi:
10.1109/ACCESS.2021.3139529.

236
Authorized licensed use limited to: KIT Library. Downloaded on November 10,2023 at 16:29:42 UTC from IEEE Xplore. Restrictions apply.

