
Abstract — Electricity load forecasting is an essential task 
within smart grids to assist demand and supply balance. 
While advanced deep learning models require large amounts 
of high-resolution data for accurate short-term load 
predictions, fine-grained load profiles can expose users' 
electricity consumption behaviors, which raises privacy and 
security concerns. One solution to improve data privacy is 
federated learning, where models are trained locally on 
private data, and only the trained model parameters are 
merged and updated on a global server. Therefore, this paper 
presents a novel transformer-based deep learning approach 
with federated learning for short-term electricity load 
prediction. To evaluate our results, we benchmark our 
federated learning architecture against central and local 
learning and compare the performance of our model to long
short-term memory models and convolutional neural 
networks. Our simulations are based on a dataset from a 
German university campus and show that transformer-based 
forecasting is a promising alternative to state-of-the-art 
models within federated learning.

Index Terms-- federated learning, load forecasting, smart
grid, transformer

I.  INTRODUCTION

The requirements for a reliable, resilient, and secure 
energy management architecture are growing [1]. While 
the energy crisis and climate change have accelerated the 
installation of photovoltaic and wind turbines, the 
electricity supply is increasingly volatile and uncertain.
Therefore, electric load forecasting, especially short-term 
load forecasting (STLF), is essential for planning and 
operating smart grids. Accurate STLF supports multiple 
disciplines, including power dispatching, intra-day 
generation planning, and peak load shaving [1]. Over the 
last decades, STLF models have improved significantly,
and nowadays, long short-term memory (LSTM) models
and convolutional neural networks (CNNs) are widely 
used in time series forecasting, as they can capture 
complex and non-linear patterns [2]. A high volume of 
fine-grained data is essential for accurate prediction 
models. Therefore, smart grids and industrial sites install
advanced metering infrastructure to monitor real-time 
energy consumption [3]. For data processing and model 
training, three fundamental architectures exist, namely 
central, local, and federated learning (FL).

This work was funded by the German Research Foundation (DFG) as 
part of the Research Training Group 2153: 'Energy Status Data -
Informatics Methods for its Collection, Analysis, and Exploitation'.

In central learning, the data is uploaded to a central
server, and one forecasting model is used to predict all load 
profiles. However, regulatory authorities and users have 
raised many privacy concerns [4]. As research shows, 
attackers can use high-resolution electricity consumption 
data to reveal customers' habits [4], location [5], or 
customers' absences for break-ins [2], leading users in 
some countries to refuse smart meter installation. Previous 
attempts to improve data security, like data aggregation, 
are unsuitable for precise STLF models, which need fine-
grained input data [6].

Another alternative is local learning, where each party 
stores its data locally and builds its individual STLF 
model. However, this prevents the forecasting models 
from potentially benefiting from peers' data and thus limits 
scalability and transfer learning [7].

FL has recently been proposed as a solution introducing 
a distributed machine learning approach to improve the 
data security, privacy, latency, and bandwidth of the 
underlying communication network [8]. Here, models are 
trained locally on private data, and only the model 
parameters are shared and updated on a global server [9].

A. Related work
FL was introduced by Vaswani et al. [10] in 2017 as a 
novel technique to share prediction models from different 
mobile phones collaboratively. Within the last years, some 
researchers have adopted FL within the energy domain, 
including energy control [1, 3, 11], non-intrusive load 
monitoring [12–14], and energy theft detection in smart 
grids [15]. In particular, the implementation of FL for 
STLF has been investigated in some publications, as seen 
in TABLE I.
Within the STLF domain, authors focus on electricity 
forecasting [16] or multi-energy predictions [17] and 
analyze attack scenarios [18] or privacy-enhancing 
measures like noise adding [2]. Since highly heterogenous 
data from different facilities can reduce FL performance, 
several authors investigate the clustering of similar 
datasets to improve prediction accuracy. Here clustering 
techniques like hierarchical clustering [19], k-means 
clustering [20], and socioeconomic clustering [4] are 
analyzed. 
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TABLE I: CONCEPT MATRIX ON THE LITERATURE OF FL-BASED STLF

Ref. Year Focus LSTM CNN
Trans-
former

[2] 2021 Increasing privacy 
by adding noise

✓
[20] 2022 Effect of clustering 

on forecast 
accuracy

✓

[5] 2020 Effect on 
networking load 
gain

✓

[21] 2021 Effect of clustered 
aggregation

✓
[19] 2022 Effect of different 

clustering variants
✓

[18] 2022 Poisoning attack 
on FL architecture

✓
[4] 2021 Socioeconomic 

clustering for FL
✓

[14] 2021 Effect of different 
clustering variants

✓
[16] 2022 FL for STLF ✓
[22] 2022 Comparing LSTM 

with basic models
✓

[23] 2022 Adaptative 
federated transfer 
learning

✓

[17] 2022 Multi-energy FL 
forecasting

✓
This 
paper

2023 FL for STLF with 
CNNs, LSTMs, 
and transformers

✓✓ ✓✓ ✓✓

Over the last decades, STLF models have improved 
significantly, and LSTM models have outperformed 
traditional recurrent neural networks (RNNs) for load 
forecasting [16]. Therefore, within the analyzed literature, 
most publications apply LSTM models for forecasting [2, 
4, 5, 14, 16, 18–22], while only a few consider CNNs or 
hybrid LSTM-CNNs [17, 23]. However, LSTM models
are challenging to parallelize due to their sequential nature, 
limiting their scalability. In response to high 
computational cost, the transformer-based architecture has 
been developed in the natural language processing domain
[10], outperforming LSTM models and CNNs while also 
allowing parallelization [24]. Since then, the application 
range of transformers has been extended to various 
domains, including computer vision [25], reinforcement 
learning [26], and audio [27].
L'Heureux et al. [24] first present a transformer-based 
architecture for load forecasting by modifying the 
architecture, adding N-space transformation, and 
proposing a procedure for contextual feature handling. 
Results show that the transformer-based forecasting model 
outperforms other state-of-the-art methods in accuracy and 
scalability.

B. Paper contribution and organization
However, to the best of our knowledge, no publications 
exist that propose a transformer-based FL architecture for 
STLF. Therefore, we focus on analyzing the forecasting 
performance of a novel transformer-based prediction 
model compared to selected state-of-the-art deep learning 
methods. Consequently, our main contributions are:

First, we present a novel transformer-based FL 
architecture for STLF to improve data privacy, model 
robustness, and scalability while enhancing 
forecasting performance. 
Second, we compare our transformer-based model 
with state-of-the-art LSTM models and CNNs. 
Third, we implement each of the three models for a
local, central, and FL architecture to evaluate our 
prediction results extensively.
Fourth, we analyze the effect of two forecasting 
horizons (12 and 24 hours) and different calendarial 
and weather features for each model.
Fifth, we demonstrate the effect of limited data on 
forecasting accuracy within local and FL. 

The results show that our transformer-based FL 
architecture can improve forecasting accuracy while 
providing high privacy and scalability. We organize the 
rest of the paper, as seen in FIG. 1: Section 2 introduces our 
data analysis, while Section 3 provides an overview of our 
forecasting models. Section 4 outlines our training 
scenarios, Section 5 evaluates our forecasting 
performance, and Section 6 presents our conclusion.

FIG. 1: GRAPHICAL SUMMARY OF THE PAPER

II.  DATA ANALYSIS

This section briefly describes our dataset, preprocessing 
techniques and explains our feature engineering methods, 
including Pearson correlation, min-max scaling, sine-
cosine transformation, and Fast Fourier Transformation
(FFT). We select the meter readings from a German 
university campus of the "Karlsruhe Institute of 
Technology" as a suitable dataset, which includes over 
2000 smart meter readings from residential buildings and 
industrial sites between 2019 and 2021 in hourly 
resolution. The measured values are indicated in kW and 
can be seen in FIG. 2. Within the selected datasets are 
administrative buildings, workshops, and production 
facilities. For performance reasons, we limit our 
simulations to a subset of 33 randomly chosen smart meter 
readings, hereafter referred to as clients. Next, we clean the 
data by filling in single missing values with the last non-
null value. Further, we replace outliers with the median of 
the previous three load readings. We consider values as 
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outliers that are (i) negative (no energy generation) or that 
(ii) deviate more than two standard deviations from the last 
value (load inertia on building level). 

FIG. 2: EXEMPLARY LOAD PROFILES FROM THE DATASET

In STLF, selecting the right features is crucial for 
building an accurate and effective forecasting model, as 
features provide necessary information about historical 
trends and patterns within the data. For feature 
engineering, we analyze weather-related and calendar 
features. To select promising weather features, we prepare 
a weather dataset from Meteostat [28] for our location and 
period. The dataset includes 14 features such as air 
temperature [°C], relative humidity [%], total precipitation 
[mm], average wind speed [km/h], sea-level air pressure 
[hPa], and others. Further, we calculate the apparent 
temperature according to Savi et al. [4], as they perform 
well with this feature. To select a final subset of weather-
related features, we apply the Pearson correlation, which
describes the linear relationship between two quantitative 
variables X and Y (1). The computed correlation values 
range from -1 to 1, indicating a strong negative or positive 
correlation. ݎ = ஼௢௩(௑,௒)௦ೣ∗௦೤ = ௡(∑ ௫௬)ି(∑ ௫)(∑ ௬)ඥ(௡(∑ ௫మି(∑ ௫)మ)(௡ ∑ ௬మି(∑ ௬)మ), (1)

where ݒ݋ܥ(ܺ, ܻ) is the covariance and ݏ௜ the standard 
deviation.
It is worth mentioning that not all variables necessarily 
have a linear relationship, and therefore, also Spearman 
correlation could have been used [29]. We then visualize 
the results in a heatmap, as seen in FIG. 3, and select the 
two features with the highest correlation regarding the 
load: air temperature (temp, 0.18) and relative humidity
(rhum, -0.21).

FIG. 3: HEATMAP OF PEARSON CORRELATIONS

Afterward, we calculate the Pearson correlation for 
calendar features, including hour, weekday, month, 

quarter, and year. Here we choose the two features, hour 
and weekday, as they have the highest correlation. After 
feature selection, we map the cyclical variables hour of the 
day and weekday to the unit circle to allow periodicity in 
time. The mapping is essential, as 11 p.m. and 0 a.m. are 
consecutive times, whereas the numerical values 11 and 0 
are not. For both features, we generate two sine and cosine 
features, as demonstrated in (2) [30]:

ℎݎݑ݋ௗ௔௬ = ቐ sin (ଶగଶସ cos(ݐ  ቀଶగଶସ ,ቁݐ  (2)

where t is the time value to be transformed.
Next, we use a min–max scaler (3) to scale all variables 

to have the same range from 0 to 1. Scaled transformation 
prevents attributes with larger scales from biasing the 
values of the objective functions, speeding up convergence 
[23]. ݔ =  ௫ି௫೘೔೙௫೘ೌೣି௫೘೔೙, (3)

where x is the variable value. 
The forecasting models make predictions based on a 

window of consecutive data samples. To select a suitable 
window size, we apply the FFT on the load data to find the 
period of dominating seasonal components of the time 
series. FFT is a transformation function that converts the 
time series sequence xn to the frequency domain xk. We 
calculate the Fourier coefficients (4) and plot the results in
FIG. 4. ௞ݔ = ∑ ௡݁ି௜ଶగ௞௡ݔ ேൗேିଵ௡ୀ଴ , (4)

where ݔ௞ is the kth coefficient of the FFT and ܺ௡denotes 
the nth sample of the time series consisting of N samples.

According to the FFT, we use the last 24 hours as a 
sliding window for our forecasting models. 

FIG. 4: PLOTTED FOURIER COEFFICIENTS OF THE LOAD DATA

Finally, we split the dataset using 70% for training, 20% 
for validation, and 10% for testing to obtain our datasets 
for our forecasting models. It is worth mentioning that we 
maintain the continuity of the time series data by not 
shuffling the datasets. 

III.  FORECASTING TASK

We evaluate four forecasting tasks for each model, 
considering two forecasting horizons (12 and 24 hours) 
and two feature sets. In the first feature set, we select five 
features: energy consumption and the respective sine and 
cosine values of the hour and weekday. The second feature 
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set consists of the last five features plus the air temperature 
and relative humidity. Therefore, we implement four 
sliding windows. Each with a look-back of 24 samples 
(one day), considering a look-ahead of sizes 12 and 24 and 
five and seven features. To evaluate our model accuracy, 
we select suitable evaluation metrics. FL models tend to 
predict the average of each dataset, hence offering only 
promising root mean squared errors (RMSE, (5)) and mean 
absolute errors (MAE, (6)). Therefore, we include also 
mean absolute percentage error (MAPE, (7)) [82]. Further, 
we measure the training time per epoch to evaluate the 
model's scalability and complexity.ܴܧܵܯ = ටଵ௡ ∑ ௜ݕ) − ௜)ଶ௡௜ୀଵݔ , ܧܣܯ(5) = ଵ௡ ∑ ௜ݕ| − ௜|௡௜ୀଵݔ , ܧܲܣܯ(6) = ଵ଴଴௡ ∑ ቚ௫೔ି௬೔௫೔ ቚ௡௜ୀଵ , (7)
where ݕ௜ and ݔ௜ present the predicted and real load value.

A. Transformer Model
The main structure of the transformer model consists of 
three components: the embedding, the encoder, and the 
decoder. The transformer embedding involves positional 
encoding and data preprocessing. In our simulation, we 
perform this step in advance during our data processing to
use the same data for all three models. Together, the 
encoder-decoder of the transformer allows for the effective 
processing of time series data by leveraging self-attention 
mechanisms [31].
We choose the hyperparameters of our transformer model 
after careful manual tuning. Several architectures are 
tested, considering 1-6 encoder and decoder layers. Within 
the multi-head attention layers, we try different numbers 
of attention heads (2-4) with varying sizes (2-8). As seen 
in FIG. 5, our best-performing transformer model consists 
of two encoder and two decoder layers.

FIG. 5: ARCHITECTURE OF OUR TRANSFORMER MODEL

The encoder input layer takes as input the window with a 
look-back of size 24 and passes it to the encoder. Within 
each encoder layer, the input tensor is fed into a multi-head 
attention layer with a dropout of 0.2. Next, we implement 
a residual connection (add layer) to connect the output of 
the multi-head attention layer with the input data before.
The multi-head attention layers have 2 heads with a size of 
4. The output is then passed to a dense layer, with a
rectified linear unit (ReLU) activation function and 
another add layer and layer normalization. Finally, the 
output is forwarded into an LSTM layer with seven LSTM 
cells, where the hidden states are passed to the multi-head 
attention layer of the decoder. Within the decoder, each 
layer similarly consists of a multi-head attention layer, 
followed by add, dense, and layer normalization. The final 
outputs of the decoder are fed into a one-dimensional 
average pooling and a dense layer, with 12 or 24 neurons, 
depending on the forecasting horizon.

B. LSTM Model
An LSTM model consists of different memory cells which 
store information, along with input, forget, and output 
gates to control the information flow into and out of the 
cell [20]. In contrast to traditional RNNs, which can 
struggle to retain information over long time intervals due 
to the vanishing gradient problem, LSTM models can 
selectively remember or forget information over arbitrary 
time intervals [19].
To develop our final LSTM model, we carefully compare 
various architectures. Here we consider 1-10 LSTM layers
with 2-256 LSTM cells and test the performance of adding 
1-5 dense layers at the end. As seen in FIG. 6, our final 
model consists of 6 LSTM layers with 32 LSTM cells 
each. 

FIG. 6: ARCHITECTURE OF OUR LSTM MODEL

The first layer takes 24 historical samples as input, passing 
them to the six consecutive LSTM layers with 32 LSTM 
cells each and hyperbolic tangent (tanh) activation 
functions. The last LSTM layer feeds the output into a 
dense layer with 32 units and a dropout of 0.2, followed by
a final dense layer, with 12 or 24 neurons, depending on 
the forecasting horizon.

C.  CNN Model
A CNN typically consists of a series of convolution and 
pooling layers for feature extraction followed by one or 
more fully connected layers to map the extracted features 
to the final output [32]. A convolutional layer operates in 
the time series domain by sliding a small kernel window
across the time series data to extract features from the input 
tensor. The resulting feature map can be input for 
subsequent layers. A pooling layer provides 
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downsampling and reduces the dimensionality of the input 
data by aggregating adjacent values into a single value 
using a predefined aggregation function [33].
We test different CNN architectures with varying 
convolutional layers (1-10), pooling layers (1-10), and 
additional batch-normalization layers. Further, we test 
various filter sizes (2-64) and convolutional widths (3-5). 
As seen in FIG. 7, our final CNN model consists of 4
convolutional and batch-normalization layers, followed by 
an average pooling layer and one dense layer with 32 
neurons and a 0.2 dropout. The convolutional layers have 
a convolution width of 3 and 32 filters. 

FIG. 7: ARCHITECTURE OF OUR ONE-DIMENSIONAL CNN

IV.  TRAINING SCENARIOS

To evaluate the performance of our forecasting models, we
introduce central and local learning as benchmarks. Within 
the three training architectures, we train our three models 
considering two forecasting horizons (12 and 24 hours) 
and the two feature sets, resulting in 36 training scenarios. 
All experiments are run in the TensorFlow 2 deep learning 
framework [34] on a simulation server using an Intel UHD 
Graphics 630 GPU with 16 GB memory attached to an 
Intel Core i9-9900K CPU at 4.6 GHz, with 8 kernels and 
32 GB memory. The distributed training scenarios are all 
simulated on a single machine.

A. Central Learning 
In central learning, a non-distributed server merges all 

individual energy consumption datasets and performs data 
processing and model training. Here, a joint forecasting 
model is developed that has access to all datasets and thus 
can benefit from other users' data. However, the model 
must generalize the training data to provide high-quality 
predictions for the individual datasets. This approach is 
most commonly applied when data privacy is not a 
significant concern. Under the central learning scenario,
we train our models for 100 epochs. Further, we consider 
early stopping based on the lowest error achieved on the 
validation set and the model checkpoint callback [19].

B. Local Learning
All individual datasets remain private and unshared in 

the fully-private local learning architecture. Each client 
trains its unique prediction model, resulting in many 
specialized models without benefitting from the 
experience embedded in data owned by other clients.
Similarly to central learning, our local models are trained 
for 100 epochs. We consider the early stopping callback 
based on the lowest loss achieved on the validation set and 
the model checkpoint callback.

C.  Federated Learning 
We apply the general FL architecture (FIG. 8) and

extend it with clustered aggregation (TABLE II). 

FIG. 8: FEDERATED LEARNING ARCHITECTURE

First, the server randomly initializes a global model 
with cluster-specific model weights. Within each cluster, 
the server distributes the global model to the clients, where 
each participating client i trains the model on its local data 
Di. Here we apply the Adam optimizer [35], a version of 
stochastic gradient descent. Afterward, the clients return 
their updated model parameters to the server, where the 
global model is updated using weighted averaging. The 
server repeats this procedure for t training rounds [21]. To 
update our clients, we apply the federated averaging 
algorithm, which calculates the data-weighted average for 
each model. 

TABLE II: FL ALGORITHM WITH CLUSTERED AGGREGATION
Algorithm 1: Federated training with clustered aggregation
1 Input: Attribute data from each of m clients
2 Based on attributes, the server groups clients into n clusters
3 The server randomly initializes a base model wrand

4 for each cluster Ck with k=1,2,…,N, in parallel do
5 Initialize cluster-specific model weights, wk ← wrand

6 end for
7 for each cluster Ck with k=1,2,…,N, in parallel do
8 for communication round t=1,2,…,T do
9          for each client ci in cluster Ck, i=1,2,…,T, in parallel do
10 Synchronize the local model with the latest cluster specific 

model: wi
k ← wk

11 Update local model wi
k by training on local Data, 

Di={Xi, Yi}
12 Transmit updated wi

k back to the server
13          end for
14 Update model weights for the cluster-specific model by 

aggregation: wk ← ଵ௟ ∑ ௞௜௟௜ୀଵݓ
15 end for
16 end for
17 Output: cluster-specific models with trained weights: wk,

k=1,2,…,N

The performance of FL is best when the data is non-
independent and identically distributed (non-iid) [36].
However, training a model with FL usually suffers from 
the non-iid data problem, where clients contain data 
distributions that are diverse from each other. As a result, 
the global model has a poor convergence rate and 
performance. Clustering clients with similar properties and 
creating individual global models for each cluster is a 
promising solution to this problem [21]. To deal with data 
heterogeneity, we apply K-Means clustering (with k = 6)
for the 33 selected clients to obtain six clusters. As the time 
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series sequences may vary in timing and speed, we apply 
dynamic time warping as a clustering metric. We choose 
the hyperparameters for our FL architecture after careful 
manual tuning using partial data from the constructed 
dataset. The most critical parameters are the number of 
local epochs Nepoch and the number of rounds Nround [21].
Considering that clients have restricted processing 
capabilities, we set Nepoch = 20 and Nround = 2.

V.  PERFORMANCE EVALUATION

To evaluate the performance of the different training
scenarios, we report the RMSE, MAE, MAPE, and 
training time per epoch for each training scenario. The 
reported metrics are averaged over all clients, clusters, or
sequences. Our results show that both FL and local 
learning achieve high forecasting performance, while FL 
works especially well with limited data available. Further, 
our transformer-based model outperforms the LSTM
model and CNN in most scenarios while needing only half 
the training time compared to the LSTM model.

In central learning, the forecasting models can benefit 
from large volumes of data, while the models might 
struggle to generalize and capture individual household 
behaviors. The metrics in TABLE III show that the 
transformer-based model performs best within the central 
learning architecture in every training scenario based on 
RMSE, MAE, and MAPE. Here the highest forecasting 
accuracy for the next 12 and 24 hours is achieved with the 
combination of calendar and weather features. However, 
the CNN is the fastest forecasting algorithm, while the 
LSTM model needs the longest training time per epoch. 

TABLE III: EVALUATION OF CENTRAL LEARNING
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 1.5628 1.4014 109.90 13
LSTM 1.5344 1.4055 114.03 508
Transf. 1.0160 0.8881 62.08 385

7 CNN 1.8131 1.6260 134.18 51
LSTM 1.5344 1.4055 114.03 750
Transf. 1.0025 0.8844 61.11 320

24 5 CNN 1.5100 1.3683 108.49 26
LSTM 1.5372 1.4079 114.29 495
Transf. 1.0408 0.9331 64.95 513

7 CNN 1.4411 1.3111 101.61 32
LSTM 1.5372 1.4079 114.29 793
Transf. 1.0221 0.9060 61.63 213

The forecasting results of FL and local learning show 
significantly higher forecasting accuracy. For instance, the 
best-performing model achieves an RMSE of 0.1677 in 
local learning and 0.1659 in FL, compared to 1.0025 in the
central architecture. The difference implies that the central 
models struggle to generalize and capture individual 
behaviors in energy usage. More extensive models might 
allow predicting individual behaviors, but as data is stored 
in a single location, the privacy risk to energy consumers 
is the highest in this training approach.
In FL and local learning, the LSTM and transformer 
models achieve similar forecasting accuracy. However, the 

transformer model needs less than half of the training time 
per epoch, resulting in higher efficiency and scalability.
In the local training, each model trains in isolation. This 
approach allows the model to learn individual load patterns 
while preventing to benefit from the other datasets. As in 
the central architecture, the transformer model achieves 
the highest accuracy in local learning (TABLE IV). 
However, no definite statement on the best feature set can 
be made. Both feature sets yield the best results depending 
on the horizon and evaluation metrics. 

TABLE IV: EVALUATION OF LOCAL LEARNING
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 0.2094 0.1787 11.168 0.45
LSTM 0.1950 0.1672 10.459 6.66
Transf. 0.1680 0.1347 7.239 2.26

7 CNN 0.2111 0.1802 11.693 0.38
LSTM 0.1992 0.1739 10.827 7.32
Transf. 0.1677 0.1323 6.896 2.89

24 5 CNN 0.2080 0.1786 11.197 0.45
LSTM 0.1998 0.1741 10.904 8.46
Transf. 0.1705 0.1392 7.656 2.76

7 CNN 0.2095 0.1781 11.141 0.55
LSTM 0.1984 0.1728 10.786 9.62
Transf. 0.1714 0.1384 7.482 3.63

For the FL architecture (TABLE V), the LSTM and 
transformer model achieve similar forecasting accuracy, 
while the transformer needs 48% less training time per 
epoch. Considering a 12-hour horizon, the transformer-
based model yields the lowest RMSE. However, the 
LSTM model performs best regarding MAE and MAPE. 
For a forecasting horizon of 24 hours, the LSTM model 
outperforms the transformer in accuracy.

TABLE V: EVALUATION OF FEDERATED LEARNING
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 0.2111 0.1777 10.828 0.54
LSTM 0.1662 0.1309 7.0647 8.12
Transf. 0.1659 0.1315 7.0747 2.58

7 CNN 0.2135 0.1802 11.503 0.34
LSTM 0.1665 0.1313 7.0401 6.45
Transf. 0.1662 0.1327 7.1314 3.07

24 5 CNN 0.2122 0.1794 10.974 0.65
LSTM 0.1701 0.1375 7.5577 8.77
Transf. 0.1711 0.1404 7.7486 5.05

7 CNN 0.2094 0.1777 10.952 0.46
LSTM 0.1730 0.1406 7.8197 7.89
Transf. 0.1713 0.1392 7.5743 3.79

The similar forecasting performance of FL and local 
learning is surprising, as the clustered FL architecture 
should benefit from similar datasets within the clusters. 
One hypothesis to explain the resemblance could be the
large training dataset. Thus, additional data from different 
users would be redundant. To evaluate this hypothesis, we 
perform further experiments only using the first three
months of the datasets for training. Here the results show 
that the FL architecture (TABLE VI) outperforms the local 
learning (TABLE VII) by 3% accuracy with limited data 
available, compared to 1% with the large dataset. The 
increasing difference indicates that FL may be most 
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relevant for STLF with restricted data available. For 
instance, when advanced metering infrastructure has just 
been installed. To avoid waiting several months before 
making reliable predictions, FL can help increase accuracy 
from the beginning.

TABLE VI: EVALUATION FEDERATED LEARNING WITH 3-MONTH DATA
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 0.2104 0.1818 11.569 3
LSTM 0.1808 0.1540 8.5709 46
Transf. 0.1768 0.1478 8.0747 24

7 CNN 0.2153 0.1855 12.275 3
LSTM 0.1876 0.1608 9.1524 46
Transf. 0.1736 0.1437 7.9205 25

24 5 CNN 0.2059 0.1783 11.067 4
LSTM 0.1925 0.1681 9.6662 54
Transf. 0.1775 0.1498 8.3008 28

7 CNN 0.2057 0.1761 11.200 4
LSTM 0.1926 0.1678 9.6334 59
Transf. 0.1806 0.1537 8.4696 33

TABLE VII: EVALUATION LOCAL LEARNING WITH 3-MONTH DATA
Hori-
zon

Fea-
tures Model RMSE MAE

MAPE
(e+07)

Time
(s)

12 5 CNN 0.2124 0.1844 11.881 2
LSTM 0.1936 0.1684 9.4323 44
Transf. 0.1787 0.1497 8.1209 20

7 CNN 0.2222 0.1917 12.750 2
LSTM 0.1952 0.1705 9.6137 39
Transf. 0.1822 0.1547 8.4378 19

24 5 CNN 0.2065 0.1796 11.271 3
LSTM 0.1950 0.1701 9.5905 54
Transf. 0.1844 0.1583 8.7302 25

7 CNN 0.2127 0.1845 11.914 3
LSTM 0.1945 0.1697 9.5587 57
Transf. 0.1828 0.1557 8.5105 27

Based on our findings, we summarize the following 
recommendations:

For the forecasting horizons studied (12 and 24 
hours), the transformer model achieves one of the 
highest accuracies (based on RMSE, MAE, and 
MAPE) with comparatively low training time per
epoch. Thus, our transformer model presents an 
accurate and scalable alternative to LSTM 
models and CNNs.
A local or FL architecture should be chosen if 
data security and prediction accuracy are highly 
relevant. FL is particularly suitable for use cases 
with limited data available. 
For STLF, a combination of calendar and weather 
features can be helpful. However, feature 
selection should be performed individually 
depending on the dataset. 

VI.  CONCLUSION

In this paper, we presented a novel transformer-based
model within an FL architecture for STLF. We 
benchmarked our FL architecture against central and local 
learning to evaluate our results and compare our model's 
performance to LSTM models and CNNs. Our simulations 
showed that transformer-based forecasting is a promising 

alternative to state-of-the-art models within local, central, 
and FL. We determined that FL approaches can 
outperform centralized learning and slightly outperform 
local learning. However, we presented favorable results
with limited data available. In this case, the performance 
of the FL model can be improved by 3% compared to local 
learning while retaining privacy. Further, we demonstrated 
that the transformer model achieved one of the highest 
accuracies with 48% less training time than the LSTM
model. Future work could study the effect of different 
clustering techniques and varying cluster sizes on 
forecasting accuracy.
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